Murtoluvusta desimaaliluvuksi -laskin
Muunna murtoluvut desimaaliluvuiksi vaiheittain
Laskin muuntaa annetun murtoluvun (aidon tai epäaidon) tai sekaluvun desimaalimuotoon (mahdollisesti jaksolliseen) ja näyttää välivaiheet.
Solution
Your input: convert $$$\frac{1700}{100}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\100&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&7&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$100$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-100 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Crimson}{0}&\phantom{0}&\phantom{1}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Crimson}{1}& 7 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$100$$$'s are in $$$17$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$17-100 \cdot 0 = 17 - 0= 17$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{DarkBlue}{0}&\phantom{1}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&7& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{1}&\color{DarkBlue}{7}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$100$$$'s are in $$$170$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$170-100 \cdot 1 = 170 - 100= 70$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Green}{1}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&7&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{7}&\color{Green}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$100$$$'s are in $$$700$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$700-100 \cdot 7 = 700 - 700= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&1&\color{Chartreuse}{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&7&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Chartreuse}{7}&\color{Chartreuse}{0}&\color{Chartreuse}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&7&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$100$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-100 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&1&7&.&\color{Peru}{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&7&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&7&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Peru}{0}&\phantom{.}&\color{Peru}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{1700}{100}=17.0$$$
Answer: $$$\frac{1700}{100}=17.0$$$