Sievennä $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$
Aiheeseen liittyvä laskin: Totuustaululaskin
Syötteesi
Sievennä boolen lauseke $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$.
Ratkaisu
Sovella De Morganin lakia $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ muuttujilla $$$x = \overline{A} + B$$$ ja $$$y = \overline{B} + C$$$:
$${\color{red}\left(\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}\right)} = {\color{red}\left(\overline{\overline{A} + B} + \overline{\overline{B} + C}\right)}$$Sovella De Morganin lakia $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ muuttujilla $$$x = \overline{A}$$$ ja $$$y = B$$$:
$${\color{red}\left(\overline{\overline{A} + B}\right)} + \overline{\overline{B} + C} = {\color{red}\left(\overline{\overline{A}} \cdot \overline{B}\right)} + \overline{\overline{B} + C}$$Sovella kaksoisnegaation (involuution) lakia $$$\overline{\overline{x}} = x$$$ kohteeseen $$$x = A$$$:
$$\left({\color{red}\left(\overline{\overline{A}}\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C} = \left({\color{red}\left(A\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C}$$Sovella De Morganin lakia $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ muuttujilla $$$x = \overline{B}$$$ ja $$$y = C$$$:
$$\left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B} + C}\right)} = \left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B}} \cdot \overline{C}\right)}$$Sovella kaksoisnegaation (involuution) lakia $$$\overline{\overline{x}} = x$$$ kohteeseen $$$x = B$$$:
$$\left(A \cdot \overline{B}\right) + \left({\color{red}\left(\overline{\overline{B}}\right)} \cdot \overline{C}\right) = \left(A \cdot \overline{B}\right) + \left({\color{red}\left(B\right)} \cdot \overline{C}\right)$$Vastaus
$$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)} = \left(A \cdot \overline{B}\right) + \left(B \cdot \overline{C}\right)$$$