Sievennä $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$

Laskin sieventää boolilausekkeen $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right)$$$ ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Totuustaululaskin

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Sievennä boolen lauseke $$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right).$$$

Ratkaisu

Sovella vaihdantalakia:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(\left(X \cdot Y\right) + Z\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot {\color{red}\left(Z + \left(X \cdot Y\right)\right)}\right)$$

Sovella absorptiolakia $$$x \cdot \left(x + y\right) = x$$$ käyttäen $$$x = Z$$$ ja $$$y = X \cdot Y$$$:

$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z \cdot \left(Z + \left(X \cdot Y\right)\right)\right)}\right) = \left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot {\color{red}\left(Z\right)}\right)$$

Sovella De Morganin lakia $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ muuttujilla $$$x = Y$$$ ja $$$y = Z$$$:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y \cdot Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right) = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \overline{Z}\right)} + \left(X \cdot \overline{Y} \cdot Z\right)$$

Sovella vaihdantalakia:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z} + \left(X \cdot \overline{Y} \cdot Z\right)\right)} = {\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \left(X \cdot \overline{Y} \cdot Z\right) + \overline{Z}\right)}$$

Sovella vaihdantalakia:

$$\left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(X \cdot \overline{Y} \cdot Z\right)} + \overline{Z} = \left(X \cdot Y\right) + \overline{Y} + {\color{red}\left(\overline{Y} \cdot X \cdot Z\right)} + \overline{Z}$$

Sovella absorptiolakia $$$x + \left(x \cdot y\right) = x$$$ käyttäen $$$x = \overline{Y}$$$ ja $$$y = X \cdot Z$$$:

$$\left(X \cdot Y\right) + {\color{red}\left(\overline{Y} + \left(\overline{Y} \cdot X \cdot Z\right)\right)} + \overline{Z} = \left(X \cdot Y\right) + {\color{red}\left(\overline{Y}\right)} + \overline{Z}$$

Sovella vaihdantalakia:

$${\color{red}\left(\left(X \cdot Y\right) + \overline{Y} + \overline{Z}\right)} = {\color{red}\left(\overline{Y} + \left(X \cdot Y\right) + \overline{Z}\right)}$$

Sovella vaihdantalakia:

$$\overline{Y} + {\color{red}\left(X \cdot Y\right)} + \overline{Z} = \overline{Y} + {\color{red}\left(Y \cdot X\right)} + \overline{Z}$$

Sovella absorptiolakia $$$x + \left(\overline{x} \cdot y\right) = x + y$$$ käyttäen $$$x = \overline{Y}$$$ ja $$$y = X$$$:

$${\color{red}\left(\overline{Y} + \left(Y \cdot X\right)\right)} + \overline{Z} = {\color{red}\left(\overline{Y} + X\right)} + \overline{Z}$$

Vastaus

$$$\left(X \cdot Y\right) + \overline{Y \cdot Z} + \left(X \cdot \overline{Y} \cdot Z \cdot \left(\left(X \cdot Y\right) + Z\right)\right) = \overline{Y} + X + \overline{Z}$$$


Please try a new game Rotatly