eMathHelp Matematiikan ratkaisin – ilmainen vaiheittainen laskin

Ratkaise matemaattiset tehtävät vaiheittain

Tämä kehittynyt laskin käsittelee algebran, geometrian, differentiaali- ja integraalilaskennan, todennäköisyyslaskennan/tilastotieteen, lineaarialgebran, lineaariohjelmoinnin ja diskreetin matematiikan tehtäviä ja näyttää ratkaisuvaiheet.
Etkö löytänyt tarvitsemaasi laskinta? Pyydä sitä
Pysyvä linkki: Integraalilaskin
Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{3}{x^{2} + 2}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=3$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{2} + 2}$$$:

$${\color{red}{\int{\frac{3}{x^{2} + 2} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x^{2} + 2} d x}\right)}}$$

Olkoon $$$u=\frac{\sqrt{2}}{2} x$$$.

Tällöin $$$du=\left(\frac{\sqrt{2}}{2} x\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \sqrt{2} du$$$.

Näin ollen,

$$3 {\color{red}{\int{\frac{1}{x^{2} + 2} d x}}} = 3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{\sqrt{2}}{2}$$$ ja $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:

$$3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}} = 3 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$

Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{3 \sqrt{2} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{3 \sqrt{2} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

Muista, että $$$u=\frac{\sqrt{2}}{2} x$$$:

$$\frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{\frac{\sqrt{2}}{2} x}} \right)}}{2}$$

Näin ollen,

$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$

Lisää integrointivakio:

$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$

Vastaus

$$$\int \frac{3}{x^{2} + 2}\, dx = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly