Magnitud de $$$\left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$

La calculadora encontrará la magnitud (longitud, norma) del vector $$$\left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$, mostrando los pasos.
$$$\langle$$$ $$$\rangle$$$
Separados por comas.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla el módulo (longitud) de $$$\mathbf{\vec{u}} = \left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$.

Solución

La magnitud de un vector está dada por la fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

La suma de los cuadrados de los valores absolutos de las coordenadas es $$$\left|{3 \sqrt{6} t^{2}}\right|^{2} + \left|{- 6 t}\right|^{2} + \left|{\sqrt{6}}\right|^{2} = 54 t^{4} + 36 t^{2} + 6$$$.

Por lo tanto, el módulo del vector es $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{54 t^{4} + 36 t^{2} + 6} = \sqrt{6} \left(3 t^{2} + 1\right)$$$.

Respuesta

La magnitud es $$$\sqrt{6} \left(3 t^{2} + 1\right)\approx 7.348469228349534 t^{2} + 2.449489742783178$$$A.


Please try a new game Rotatly