# $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]$

La calculadora multiplicará la matriz $2$ x $3$ $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]$ por la matriz $3$ x $2$ $\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]$, y se muestran los pasos.

$\times$
$\times$

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

### Tu aportación

Calcular $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right].$

### Solución

$\left[\begin{array}{ccc}{\color{Chartreuse}3} & {\color{Blue}2} & {\color{DarkMagenta}2}\\{\color{SaddleBrown}2} & {\color{OrangeRed}3} & {\color{Violet}-2}\end{array}\right]\cdot \left[\begin{array}{cc}{\color{Violet}3} & {\color{Chocolate}2}\\{\color{DeepPink}2} & {\color{Purple}3}\\{\color{Red}2} & {\color{OrangeRed}-2}\end{array}\right] = \left[\begin{array}{cc}{\color{Chartreuse}\left(3\right)}\cdot {\color{Violet}\left(3\right)} + {\color{Blue}\left(2\right)}\cdot {\color{DeepPink}\left(2\right)} + {\color{DarkMagenta}\left(2\right)}\cdot {\color{Red}\left(2\right)} & {\color{Chartreuse}\left(3\right)}\cdot {\color{Chocolate}\left(2\right)} + {\color{Blue}\left(2\right)}\cdot {\color{Purple}\left(3\right)} + {\color{DarkMagenta}\left(2\right)}\cdot {\color{OrangeRed}\left(-2\right)}\\{\color{SaddleBrown}\left(2\right)}\cdot {\color{Violet}\left(3\right)} + {\color{OrangeRed}\left(3\right)}\cdot {\color{DeepPink}\left(2\right)} + {\color{Violet}\left(-2\right)}\cdot {\color{Red}\left(2\right)} & {\color{SaddleBrown}\left(2\right)}\cdot {\color{Chocolate}\left(2\right)} + {\color{OrangeRed}\left(3\right)}\cdot {\color{Purple}\left(3\right)} + {\color{Violet}\left(-2\right)}\cdot {\color{OrangeRed}\left(-2\right)}\end{array}\right] = \left[\begin{array}{cc}17 & 8\\8 & 17\end{array}\right]$

### Respuesta

$\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right] = \left[\begin{array}{cc}17 & 8\\8 & 17\end{array}\right]$A