Calculadora de plano tangente

Encuentra planos tangentes paso a paso

La calculadora intentará encontrar el plano tangente a la curva explícita e implícita en el punto dado, con los pasos que se muestran.

$$$($$$
,
,
$$$)$$$

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Calcula el plano tangente a $$$x^{2} + y^{2} + z^{2} = 14$$$ en $$$\left(x, y, z\right) = \left(1, 3, 2\right)$$$.

Solución

La función se puede representar en la forma $$$F{\left(x,y,z \right)} = 0$$$, donde $$$F{\left(x,y,z \right)} = x^{2} + y^{2} + z^{2} - 14$$$.

Encuentra las derivadas parciales.

$$$\frac{\partial}{\partial x} \left(F{\left(x,y,z \right)}\right) = \frac{\partial}{\partial x} \left(x^{2} + y^{2} + z^{2} - 14\right) = 2 x$$$ (para conocer los pasos, consulte calculadora de derivadas parciales).

$$$\frac{\partial}{\partial y} \left(F{\left(x,y,z \right)}\right) = \frac{\partial}{\partial y} \left(x^{2} + y^{2} + z^{2} - 14\right) = 2 y$$$ (para conocer los pasos, consulte calculadora de derivadas parciales).

$$$\frac{\partial}{\partial z} \left(F{\left(x,y,z \right)}\right) = \frac{\partial}{\partial z} \left(x^{2} + y^{2} + z^{2} - 14\right) = 2 z$$$ (para conocer los pasos, consulte calculadora de derivadas parciales).

Evalúa las derivadas en el punto dado.

$$$\frac{\partial}{\partial x} \left(x^{2} + y^{2} + z^{2} - 14\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = \left(2 x\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = 2$$$

$$$\frac{\partial}{\partial y} \left(x^{2} + y^{2} + z^{2} - 14\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = \left(2 y\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = 6$$$

$$$\frac{\partial}{\partial z} \left(x^{2} + y^{2} + z^{2} - 14\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = \left(2 z\right)|_{\left(\left(x, y, z\right) = \left(1, 3, 2\right)\right)} = 4$$$

La ecuación del plano tangente es $$$\frac{\partial}{\partial x} \left(F{\left(x,y,z \right)}\right)|_{\left(\left(x, y, z\right) = \left(x_{0}, y_{0}, z_{0}\right)\right)} \left(x - x_{0}\right) + \frac{\partial}{\partial y} \left(F{\left(x,y,z \right)}\right)|_{\left(\left(x, y, z\right) = \left(x_{0}, y_{0}, z_{0}\right)\right)} \left(y - y_{0}\right) + \frac{\partial}{\partial z} \left(F{\left(x,y,z \right)}\right)|_{\left(\left(x, y, z\right) = \left(x_{0}, y_{0}, z_{0}\right)\right)} \left(z - z_{0}\right) = 0.$$$

En nuestro caso, $$$2 \left(x - 1\right) + 6 \left(y - 3\right) + 4 \left(z - 2\right) = 0$$$.

Esto se puede reescribir como $$$2 x + 6 y + 4 z = 28$$$.

O, más simplemente: $$$z = - \frac{x}{2} - \frac{3 y}{2} + 7$$$.

Respuesta

La ecuación del plano tangente es $$$z = - \frac{x}{2} - \frac{3 y}{2} + 7 = - 0.5 x - 1.5 y + 7$$$A.