Calculadora de series y sumas con pasos
Calcula series y sumas paso a paso
Esta calculadora intentará encontrar la suma infinita de series aritméticas, geométricas, de potencias y binomiales, así como la suma parcial, con pasos mostrados (si es posible). También comprobará si la serie converge.
Answer
Your input: calculate $$$\sum_{n=1}^{\infty} 3^{- n}$$$
$$$\sum_{n=1}^{\infty} 3^{- n}$$$ is an infinite geometric series with the first term $$$b=\frac{1}{3}$$$ and the common ratio $$$q=\frac{1}{3}$$$.
By the ratio test, it is convergent.
Its sum is $$$S=\frac{b}{1-q}=\frac{1}{2}$$$.
Therefore,
$${\color{red}{\left(\sum_{n=1}^{\infty} 3^{- n}\right)}}={\color{red}{\left(\frac{1}{2}\right)}}$$
Hence,
$$\sum_{n=1}^{\infty} 3^{- n}=\frac{1}{2}$$
Answer: $$$\sum_{n=1}^{\infty} 3^{- n}=\frac{1}{2}$$$