Calculadora de asíntotas

Halla las asíntotas paso a paso

La calculadora intentará hallar las asíntotas verticales, horizontales y oblicuas de la función, mostrando los pasos.

Enter a function: `f(x)=`

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find the vertical, horizontal and slant asymptotes of the function $$$f(x)=x \ln{\left(x \right)}$$$

Vertical Asymptotes

Can't find vertical asymptotes.

Horizontal Asymptotes

Line $$$y=L$$$ is a horizontal asymptote of the function $$$y=f{\left(x \right)}$$$, if either $$$\lim_{x \to \infty} f{\left(x \right)}=L$$$ or $$$\lim_{x \to -\infty} f{\left(x \right)}=L$$$, and $$$L$$$ is finite.

Calculate the limits:

$$$\lim_{x \to \infty}\left(x \ln{\left(x \right)}\right)=\infty$$$ (for steps, see limit calculator).

$$$\lim_{x \to -\infty}\left(x \ln{\left(x \right)}\right)=-\infty$$$ (for steps, see limit calculator).

Thus, there are no horizontal asymptotes.

Slant Asymptotes

Line $$$y=mx+b$$$ is a slant asymptote of the function $$$y=f{\left(x \right)}$$$, if either $$$m=\lim_{x \to \infty}\left(\frac{f{\left(x \right)}}{x}\right)=L$$$ or $$$m=\lim_{x \to -\infty}\left(\frac{f{\left(x \right)}}{x}\right)=L$$$, and $$$L$$$ is finite and nonzero.

Calculate the first limit:

$$$\lim_{x \to \infty} \ln{\left(x \right)}=\infty$$$ (for steps, see limit calculator).

Since the value of the limit is infinite, then there is no slant asymptote in the direction of infinity.

Calculate the second limit:

$$$\lim_{x \to -\infty} \ln{\left(x \right)}=\infty$$$ (for steps, see limit calculator).

Since the value of the limit is infinite, then there is no slant asymptote in the direction of infinity.

Thus, this function doesn't have a slant asymptote.

Answer

Can't find vertical asymptotes.

No horizontal asymptotes.

No slant asymptotes.


Please try a new game Rotatly