Calculadora de asíntotas

Halla las asíntotas paso a paso

La calculadora intentará hallar las asíntotas verticales, horizontales y oblicuas de la función, mostrando los pasos.

Enter a function: `f(x)=`

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find the vertical, horizontal and slant asymptotes of the function $$$f(x)=\frac{1}{x}$$$

Vertical Asymptotes

The line $$$x=L$$$ is a vertical asymptote of the function $$$y=\frac{1}{x}$$$, if the limit of the function (one-sided) at this point is infinite.

In other words, it means that possible points are points where the denominator equals $$$0$$$ or doesn't exist.

So, find the points where the denominator equals $$$0$$$ and check them.

$$$x=0$$$, check:

$$$\lim_{x \to 0^+} \frac{1}{x}=\infty$$$ (for steps, see limit calculator).

Since the limit is infinite, then $$$x=0$$$ is a vertical asymptote.

Horizontal Asymptotes

Line $$$y=L$$$ is a horizontal asymptote of the function $$$y=f{\left(x \right)}$$$, if either $$$\lim_{x \to \infty} f{\left(x \right)}=L$$$ or $$$\lim_{x \to -\infty} f{\left(x \right)}=L$$$, and $$$L$$$ is finite.

Calculate the limits:

$$$\lim_{x \to \infty} \frac{1}{x}=0$$$ (for steps, see limit calculator).

$$$\lim_{x \to -\infty} \frac{1}{x}=0$$$ (for steps, see limit calculator).

Thus, the horizontal asymptote is $$$y=0$$$.

Slant Asymptotes

Since the degree of the numerator is not one degree greater than the denominator, then there are no slant asymptotes.

Answer

Vertical asymptote: $$$x=0$$$

Horizontal asymptote: $$$y=0$$$

No slant asymptotes.


Please try a new game Rotatly