Forma polar de $$$- 2 \sqrt{3} - 6 i$$$

La calculadora encontrará la forma polar del número complejo $$$- 2 \sqrt{3} - 6 i$$$, mostrando los pasos.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Encuentra la forma polar de $$$- 2 \sqrt{3} - 6 i$$$.

Solución

La forma estándar del número complejo es $$$- 2 \sqrt{3} - 6 i$$$.

Para un número complejo $$$a + b i$$$, la forma polar viene dada por $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, donde $$$r = \sqrt{a^{2} + b^{2}}$$$ y $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.

Tenemos que $$$a = - 2 \sqrt{3}$$$ y $$$b = -6$$$.

Por lo tanto, $$$r = \sqrt{\left(- 2 \sqrt{3}\right)^{2} + \left(-6\right)^{2}} = 4 \sqrt{3}$$$.

Además, $$$\theta = \operatorname{atan}{\left(\frac{-6}{- 2 \sqrt{3}} \right)} - \pi = - \frac{2 \pi}{3}$$$.

Por lo tanto, $$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right)$$$.

Respuesta

$$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right) = 4 \sqrt{3} \left(\cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}\right)$$$A


Please try a new game Rotatly