$\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle$

The calculator will multiply the vector $\left\langle 1, 2, -2\right\rangle$ by the scalar $\frac{8}{9}$, with steps shown.
$\langle$ $\rangle$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle$.
${\color{DeepPink}\left(\frac{8}{9}\right)}\cdot \left\langle 1, 2, -2\right\rangle = \left\langle {\color{DeepPink}\left(\frac{8}{9}\right)}\cdot \left(1\right), {\color{DeepPink}\left(\frac{8}{9}\right)}\cdot \left(2\right), {\color{DeepPink}\left(\frac{8}{9}\right)}\cdot \left(-2\right)\right\rangle = \left\langle \frac{8}{9}, \frac{16}{9}, - \frac{16}{9}\right\rangle$
$\frac{8}{9}\cdot \left\langle 1, 2, -2\right\rangle = \left\langle \frac{8}{9}, \frac{16}{9}, - \frac{16}{9}\right\rangle\approx \left\langle 0.888888888888889, 1.777777777777778, -1.777777777777778\right\rangle$A