# $\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$

The calculator will multiply the vector $\left\langle 5, 4, 4\right\rangle$ by the scalar $- \frac{4}{57}$, with steps shown.
$\langle$ $\rangle$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$.
${\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left\langle 5, 4, 4\right\rangle = \left\langle {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(5\right), {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(4\right), {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(4\right)\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle$
$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle\approx \left\langle -0.350877192982456, -0.280701754385965, -0.280701754385965\right\rangle$A