$$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$$$

The calculator will multiply the vector $$$\left\langle 5, 4, 4\right\rangle$$$ by the scalar $$$- \frac{4}{57}$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$$$.


Multiply each coordinate of the vector by the scalar:

$$${\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left\langle 5, 4, 4\right\rangle = \left\langle {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(5\right), {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(4\right), {\color{Crimson}\left(- \frac{4}{57}\right)}\cdot \left(4\right)\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle$$$


$$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle\approx \left\langle -0.350877192982456, -0.280701754385965, -0.280701754385965\right\rangle$$$A