# Vector projection of $\left\langle -4, 1, 3\right\rangle$ onto $\left\langle 5, 4, 4\right\rangle$

The calculator will find the vector projection of the vector $\left\langle -4, 1, 3\right\rangle$ onto the vector $\left\langle 5, 4, 4\right\rangle$, with steps shown.

Related calculator: Scalar Projection Calculator

$\langle$ $\rangle$
Comma-separated.
$\langle$ $\rangle$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate the vector projection of $\mathbf{\vec{v}} = \left\langle -4, 1, 3\right\rangle$ onto $\mathbf{\vec{u}} = \left\langle 5, 4, 4\right\rangle$.

### Solution

The vector projection is given by $\text{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}^{2}} \mathbf{\vec{u}}.$

$\mathbf{\vec{v}}\cdot \mathbf{\vec{u}} = -4$ (for steps, see dot product calculator).

$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{57}$ (for steps, see vector magnitude calculator).

Thus, the vector projection is $\text{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{-4}{\left(\sqrt{57}\right)^{2}}\cdot \left\langle 5, 4, 4\right\rangle = \left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle$ (for steps, see vector scalar multiplication calculator).

The vector projection is $\left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle\approx \left\langle -0.350877192982456, -0.280701754385965, -0.280701754385965\right\rangle.$A