Scalar projection of $$$\left\langle 1, 1, 2\right\rangle$$$ onto $$$\left\langle -2, 3, 1\right\rangle$$$

The calculator will find the scalar projection of the vector $$$\left\langle 1, 1, 2\right\rangle$$$ onto the vector $$$\left\langle -2, 3, 1\right\rangle$$$, with steps shown.

Related calculator: Vector Projection Calculator

$$$\langle$$$ $$$\rangle$$$
$$$\langle$$$ $$$\rangle$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate the scalar projection of $$$\mathbf{\vec{v}} = \left\langle 1, 1, 2\right\rangle$$$ onto $$$\mathbf{\vec{u}} = \left\langle -2, 3, 1\right\rangle$$$.


The scalar projection is given by $$$\frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}}$$$.

$$$\mathbf{\vec{v}}\cdot \mathbf{\vec{u}} = 3$$$ (for steps, see dot product calculator).

$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{14}$$$ (for steps, see vector magnitude calculator).

Thus, the scalar projection is $$$\frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}} = \frac{3}{\sqrt{14}} = \frac{3 \sqrt{14}}{14}.$$$


The scalar projection is $$$\frac{3 \sqrt{14}}{14}\approx 0.801783725737273$$$A.