Dot product of $$$\left\langle -8, 3\right\rangle$$$ and $$$\left\langle -6, -2\right\rangle$$$

The calculator will find the dot product of two vectors $$$\left\langle -8, 3\right\rangle$$$ and $$$\left\langle -6, -2\right\rangle$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
$$$\langle$$$ $$$\rangle$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left\langle -8, 3\right\rangle\cdot \left\langle -6, -2\right\rangle$$$.


The dot product is given by $$$\mathbf{\vec{u}}\cdot \mathbf{\vec{v}} = \sum_{i=1}^{n} u_{i} v_{i}$$$.

Thus, what we need to do is multiply the corresponding coordinates and then add up the results: $$$\left\langle -8, 3\right\rangle\cdot \left\langle -6, -2\right\rangle = \left(-8\right)\cdot \left(-6\right) + \left(3\right)\cdot \left(-2\right) = 42.$$$


$$$\left\langle -8, 3\right\rangle\cdot \left\langle -6, -2\right\rangle = 42$$$A