# Find $$$P{\left(53,6 \right)}$$$

### Your Input

**Find the number of permutations without repetitions $$$P{\left(53,6 \right)}$$$.**

### Solution

The formula is $$$P{\left(n,r \right)} = \frac{n!}{\left(n - r\right)!}$$$.

We have that $$$n = 53$$$ and $$$r = 6$$$.

Thus, $$$P{\left(53,6 \right)} = \frac{53!}{\left(53 - 6\right)!} = 16529385600$$$ (for calculating the factorial, see factorial calculator).

### Answer

**$$$P{\left(53,6 \right)} = 16529385600$$$**