Second derivative of $$$\tan^{2}{\left(x \right)}$$$

The calculator will find the second derivative of $$$\tan^{2}{\left(x \right)}$$$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find $$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right)$$$.

Solution

Find the first derivative $$$\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right)$$$

The function $$$\tan^{2}{\left(x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = u^{2}$$$ and $$$g{\left(x \right)} = \tan{\left(x \right)}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)}$$

Apply the power rule $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ with $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)$$

Return to the old variable:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right) = 2 {\color{red}\left(\tan{\left(x \right)}\right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)$$

The derivative of the tangent is $$$\frac{d}{dx} \left(\tan{\left(x \right)}\right) = \sec^{2}{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)} = 2 \tan{\left(x \right)} {\color{red}\left(\sec^{2}{\left(x \right)}\right)}$$

Thus, $$$\frac{d}{dx} \left(\tan^{2}{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$.

Next, $$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)$$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(x \right)} = \tan{\left(x \right)} \sec^{2}{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)}$$

Apply the product rule $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ with $$$f{\left(x \right)} = \sec^{2}{\left(x \right)}$$$ and $$$g{\left(x \right)} = \tan{\left(x \right)}$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)} \sec^{2}{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) \tan{\left(x \right)} + \sec^{2}{\left(x \right)} \frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)}$$

The derivative of the tangent is $$$\frac{d}{dx} \left(\tan{\left(x \right)}\right) = \sec^{2}{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} \frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) + 2 \sec^{2}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\tan{\left(x \right)}\right)\right)} = 2 \tan{\left(x \right)} \frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right) + 2 \sec^{2}{\left(x \right)} {\color{red}\left(\sec^{2}{\left(x \right)}\right)}$$

The function $$$\sec^{2}{\left(x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = u^{2}$$$ and $$$g{\left(x \right)} = \sec{\left(x \right)}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sec^{2}{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)} = 2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)}$$

Apply the power rule $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ with $$$n = 2$$$:

$$2 \tan{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)} = 2 \tan{\left(x \right)} {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)}$$

Return to the old variable:

$$4 \tan{\left(x \right)} {\color{red}\left(u\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)} = 4 \tan{\left(x \right)} {\color{red}\left(\sec{\left(x \right)}\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) + 2 \sec^{4}{\left(x \right)}$$

The derivative of the secant is $$$\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}$$$:

$$4 \tan{\left(x \right)} \sec{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} + 2 \sec^{4}{\left(x \right)} = 4 \tan{\left(x \right)} \sec{\left(x \right)} {\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)} + 2 \sec^{4}{\left(x \right)}$$

Simplify:

$$4 \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} + 2 \sec^{4}{\left(x \right)} = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$

Thus, $$$\frac{d}{dx} \left(2 \tan{\left(x \right)} \sec^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$.

Therefore, $$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$.

Answer

$$$\frac{d^{2}}{dx^{2}} \left(\tan^{2}{\left(x \right)}\right) = \left(-4 + \frac{6}{\cos^{2}{\left(x \right)}}\right) \sec^{2}{\left(x \right)}$$$A