# Second derivative of $\sin{\left(x^{2} \right)}$

The calculator will find the second derivative of $\sin{\left(x^{2} \right)}$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right)$.

### Find the first derivative $\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)$

The function $\sin{\left(x^{2} \right)}$ is the composition $f{\left(g{\left(x \right)} \right)}$ of two functions $f{\left(u \right)} = \sin{\left(u \right)}$ and $g{\left(x \right)} = x^{2}$.

Apply the chain rule $\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)}$$

The derivative of the sine is $\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right)$$

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) = \cos{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right)$$

Apply the power rule $\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$ with $n = 2$:

$$\cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = \cos{\left(x^{2} \right)} {\color{red}\left(2 x\right)}$$

Thus, $\frac{d}{dx} \left(\sin{\left(x^{2} \right)}\right) = 2 x \cos{\left(x^{2} \right)}$.

### Next, $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = \frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)$

Apply the constant multiple rule $\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$ with $c = 2$ and $f{\left(x \right)} = x \cos{\left(x^{2} \right)}$:

$${\color{red}\left(\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)}$$

Apply the product rule $\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$ with $f{\left(x \right)} = x$ and $g{\left(x \right)} = \cos{\left(x^{2} \right)}$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x^{2} \right)}\right)\right)} = 2 {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x^{2} \right)} + x \frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)}$$

The function $\cos{\left(x^{2} \right)}$ is the composition $f{\left(g{\left(x \right)} \right)}$ of two functions $f{\left(u \right)} = \cos{\left(u \right)}$ and $g{\left(x \right)} = x^{2}$.

Apply the chain rule $\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$:

$$2 x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x^{2} \right)}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

The derivative of the cosine is $\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$:

$$2 x {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = 2 x {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

$$- 2 x \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left({\color{red}\left(x^{2}\right)} \right)} \frac{d}{dx} \left(x^{2}\right) + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Apply the power rule $\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$ with $n = 2$:

$$- 2 x \sin{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right) = - 2 x \sin{\left(x^{2} \right)} {\color{red}\left(2 x\right)} + 2 \cos{\left(x^{2} \right)} \frac{d}{dx} \left(x\right)$$

Apply the power rule $\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$ with $n = 1$, in other words, $\frac{d}{dx} \left(x\right) = 1$:

$$- 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)} {\color{red}\left(1\right)}$$

Thus, $\frac{d}{dx} \left(2 x \cos{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$.

Therefore, $\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$.

$\frac{d^{2}}{dx^{2}} \left(\sin{\left(x^{2} \right)}\right) = - 4 x^{2} \sin{\left(x^{2} \right)} + 2 \cos{\left(x^{2} \right)}$A