Second derivative of $$$3^{x}$$$

The calculator will find the second derivative of $$$3^{x}$$$, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right)$$$.

Solution

Find the first derivative $$$\frac{d}{dx} \left(3^{x}\right)$$$

Apply the exponential rule $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ with $$$n = 3$$$:

$${\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$

Thus, $$$\frac{d}{dx} \left(3^{x}\right) = 3^{x} \ln\left(3\right)$$$.

Next, $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = \frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)$$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \ln\left(3\right)$$$ and $$$f{\left(x \right)} = 3^{x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right)\right)} = {\color{red}\left(\ln\left(3\right) \frac{d}{dx} \left(3^{x}\right)\right)}$$

Apply the exponential rule $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ with $$$n = 3$$$:

$$\ln\left(3\right) {\color{red}\left(\frac{d}{dx} \left(3^{x}\right)\right)} = \ln\left(3\right) {\color{red}\left(3^{x} \ln\left(3\right)\right)}$$

Thus, $$$\frac{d}{dx} \left(3^{x} \ln\left(3\right)\right) = 3^{x} \ln^{2}\left(3\right)$$$.

Therefore, $$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$.

Answer

$$$\frac{d^{2}}{dx^{2}} \left(3^{x}\right) = 3^{x} \ln^{2}\left(3\right)$$$A