# Solve $\begin{cases} a + b = 1 \\ - a + 3 b = 2 \end{cases}$ for $a$, $b$

The calculator will solve the system of linear equations $\begin{cases} a + b = 1 \\ - a + 3 b = 2 \end{cases}$ for $a$, $b$, with steps shown.

Related calculator: System of Equations Calculator

Comma-separated, for example, x+2y=5,3x+5y=14.
Leave empty for autodetection or specify variables like x,y (comma-separated).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Solve $\begin{cases} a + b = 1 \\ - a + 3 b = 2 \end{cases}$ for $a$, $b$ using the Gauss-Jordan Elimination method.

### Solution

Write down the augmented matrix: $\left[\begin{array}{cc|c}1 & 1 & 1\\-1 & 3 & 2\end{array}\right]$.

Perform the Gauss-Jordan elimination (for steps, see Gauss-Jordan elimination calculator): $\left[\begin{array}{cc|c}1 & 1 & 1\\0 & 4 & 3\end{array}\right]$.

Back-substitute:

$b = \frac{3}{4}$

$a = 1 - \left(\frac{3}{4}\right) \left(1\right) = \frac{1}{4}$

$a = \frac{1}{4} = 0.25$A
$b = \frac{3}{4} = 0.75$A