Rotate $$$\left(3 \sqrt{2}, \frac{5 \sqrt{2}}{4}\right)$$$ by $$$45^{\circ}$$$ counterclockwise around $$$\left(0, 0\right)$$$

The calculator will rotate the point $$$\left(3 \sqrt{2}, \frac{5 \sqrt{2}}{4}\right)$$$ by the angle $$$45^{\circ}$$$ counterclockwise around the point $$$\left(0, 0\right)$$$, with steps shown.
$$$($$$
,
$$$)$$$
$$$($$$
,
$$$)$$$
The origin is the point $$$\left(0, 0\right)$$$.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Rotate $$$\left(3 \sqrt{2}, \frac{5 \sqrt{2}}{4}\right)$$$ by the angle $$$45^{\circ}$$$ counterclockwise around $$$\left(0, 0\right)$$$.

Solution

Rotation of a point $$$\left(x, y\right)$$$ around the origin by the angle $$$\theta$$$ counterclockwise will give a new point $$$\left(x \cos{\left(\theta \right)} - y \sin{\left(\theta \right)}, x \sin{\left(\theta \right)} + y \cos{\left(\theta \right)}\right)$$$.

In our case, $$$x = 3 \sqrt{2}$$$, $$$y = \frac{5 \sqrt{2}}{4}$$$, and $$$\theta = 45^{\circ}$$$.

Therefore, the new point is $$$\left(3 \sqrt{2} \cos{\left(45^{\circ} \right)} - \frac{5 \sqrt{2}}{4} \sin{\left(45^{\circ} \right)}, 3 \sqrt{2} \sin{\left(45^{\circ} \right)} + \frac{5 \sqrt{2}}{4} \cos{\left(45^{\circ} \right)}\right) = \left(\frac{7}{4}, \frac{17}{4}\right).$$$

Answer

The new point is $$$\left(\frac{7}{4}, \frac{17}{4}\right) = \left(1.75, 4.25\right)$$$A.