# Roots of $f{\left(x \right)} = x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15$

The calculator will try to find all roots of the polynomial $f{\left(x \right)} = x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15$.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Solve $x^{4} + 6 x^{3} - 3 x^{2} + 17 x - 15 = 0$.
Root: $- \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{3}{2} + \frac{\sqrt{- 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22 + \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}}}{2}\approx 0.793705310335777$A, multiplicity: $1$A.
Root: $- \frac{\sqrt{- 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22 + \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}}}{2} - \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{3}{2}\approx -6.847415492273561$A, multiplicity: $1$A.
Root: $- \frac{3}{2} + \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} + \frac{\sqrt{- \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}} - 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22}}{2}\approx 0.026855090968892 + 1.661100453811431 i$A, multiplicity: $1$A.
Root: $- \frac{3}{2} + \frac{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}}{2} - \frac{\sqrt{- \frac{106}{\sqrt{- \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + 11}} - 2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}} + \frac{53}{2 \sqrt[3]{- \frac{271}{16} + \frac{\sqrt{668949}}{16}}} + 22}}{2}\approx 0.026855090968892 - 1.661100453811431 i$A, multiplicity: $1$A.