Μέτρο του $$$\left\langle - \frac{75 \cos{\left(5 t \right)}}{17}, - \frac{75 \sin{\left(5 t \right)}}{17}, 0\right\rangle$$$
Η είσοδός σας
Βρείτε το μέτρο (μήκος) του $$$\mathbf{\vec{u}} = \left\langle - \frac{75 \cos{\left(5 t \right)}}{17}, - \frac{75 \sin{\left(5 t \right)}}{17}, 0\right\rangle$$$.
Λύση
Το μέτρο ενός διανύσματος δίνεται από τον τύπο $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
Το άθροισμα των τετραγώνων των απόλυτων τιμών των συντεταγμένων είναι $$$\left|{- \frac{75 \cos{\left(5 t \right)}}{17}}\right|^{2} + \left|{- \frac{75 \sin{\left(5 t \right)}}{17}}\right|^{2} + \left|{0}\right|^{2} = \frac{5625 \sin^{2}{\left(5 t \right)}}{289} + \frac{5625 \cos^{2}{\left(5 t \right)}}{289}.$$$
Επομένως, το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{5625 \sin^{2}{\left(5 t \right)}}{289} + \frac{5625 \cos^{2}{\left(5 t \right)}}{289}} = \frac{75}{17}.$$$
Απάντηση
Το μέτρο είναι $$$\frac{75}{17}\approx 4.411764705882353$$$A.