Ορίζουσα Wronski του $$$x$$$, $$$\frac{1}{x^{5}}$$$
Η είσοδός σας
Υπολογίστε το Wronskian των $$$\left\{f_{1} = x, f_{2} = \frac{1}{x^{5}}\right\}$$$.
Λύση
Το Wronskian δίνεται από την ακόλουθη ορίζουσα: $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}f_{1}\left(x\right) & f_{2}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right)\end{array}\right|.$$$
Στην περίπτωσή μας, $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & \frac{1}{x^{5}}\\\left(x\right)^{\prime } & \left(\frac{1}{x^{5}}\right)^{\prime }\end{array}\right|.$$$
Βρείτε τις παραγώγους (για τα βήματα, δείτε υπολογιστής παραγώγου): $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & \frac{1}{x^{5}}\\1 & - \frac{5}{x^{6}}\end{array}\right|$$$.
Βρείτε την ορίζουσα (για τα βήματα, δείτε υπολογιστής ορίζουσας): $$$\left|\begin{array}{cc}x & \frac{1}{x^{5}}\\1 & - \frac{5}{x^{6}}\end{array}\right| = - \frac{6}{x^{5}}$$$.
Απάντηση
Ο Wronskian ισούται με $$$- \frac{6}{x^{5}}$$$A.