Δεύτερη παράγωγος της $$$x \sin{\left(x \right)}$$$

Ο υπολογιστής θα βρει τη δεύτερη παράγωγο της $$$x \sin{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής Παραγώγου, Υπολογιστής λογαριθμικής παραγώγισης

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right)$$$.

Λύση

Βρείτε την πρώτη παράγωγο $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right)$$$

Εφαρμόστε τον κανόνα του γινομένου $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(x \right)} + x \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

Η παράγωγος του ημιτόνου είναι $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right) = x {\color{red}\left(\cos{\left(x \right)}\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right)$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(1\right)}$$

Άρα, $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right) = x \cos{\left(x \right)} + \sin{\left(x \right)}$$$.

Στη συνέχεια, $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = \frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)$$$

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

Η παράγωγος του ημιτόνου είναι $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right)$$

Εφαρμόστε τον κανόνα του γινομένου $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = \cos{\left(x \right)}$$$:

$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x \right)} + x \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \cos{\left(x \right)} = x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(1\right)} + \cos{\left(x \right)}$$

Η παράγωγος του συνημιτόνου είναι $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + 2 \cos{\left(x \right)} = x {\color{red}\left(- \sin{\left(x \right)}\right)} + 2 \cos{\left(x \right)}$$

Άρα, $$$\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.

Επομένως, $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.

Απάντηση

$$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$A


Please try a new game Rotatly