Triple Product Calculator

The calculator will calculate the triple product (both scalar and vector) of the three vectors, with steps shown.

$\langle$ $\rangle$
Comma-separated.
$\langle$ $\rangle$
Comma-separated.
$\langle$ $\rangle$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$, $\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle$, $\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$, and $\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$

Solution

• Calculate the scalar triple product $\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$

$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle$ (for steps, see cross product calculator).

Next, $\left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle = -11$ (for steps, see dot product calculator).

The scalar triple product can be found as the determinant that has three vectors as its rows or columns.

• Calculate the scalar triple product $\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle.$

$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle$ (for steps, see cross product calculator).

Next, $\left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle = -11$ (for steps, see dot product calculator).

The scalar triple product can be found as the determinant that has three vectors as its rows or columns.

• Calculate the vector triple product $\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$

$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle$ (for steps, see cross product calculator).

Next, $\left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle = \left\langle 13, 0, 26\right\rangle$ (for steps, see cross product calculator).

• Calculate the vector triple product $\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$

$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle$ (for steps, see cross product calculator).

Next, $\left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$ (for steps, see cross product calculator).

$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = -11$A
$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = -11$A
$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle 13, 0, 26\right\rangle$A
$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$A