Triple Product Calculator

The calculator will calculate the triple product (both scalar and vector) of the three vectors, with steps shown.

$$$\langle$$$ $$$\rangle$$$
Comma-separated.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$$$, $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle$$$, $$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$$$, and $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$$$

Solution

  • Calculate the scalar triple product $$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$$$

    $$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle$$$ (for steps, see cross product calculator).

    Next, $$$\left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle = -11$$$ (for steps, see dot product calculator).

    The scalar triple product can be found as the determinant that has three vectors as its rows or columns.

  • Calculate the scalar triple product $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle.$$$

    $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle$$$ (for steps, see cross product calculator).

    Next, $$$\left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle = -11$$$ (for steps, see dot product calculator).

    The scalar triple product can be found as the determinant that has three vectors as its rows or columns.

  • Calculate the vector triple product $$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$$$

    $$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle$$$ (for steps, see cross product calculator).

    Next, $$$\left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle = \left\langle 13, 0, 26\right\rangle$$$ (for steps, see cross product calculator).

  • Calculate the vector triple product $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$$$

    $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle$$$ (for steps, see cross product calculator).

    Next, $$$\left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$$$ (for steps, see cross product calculator).

Answer

$$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = -11$$$A

$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = -11$$$A

$$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle 13, 0, 26\right\rangle$$$A

$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$$$A