Triple Product Calculator
The calculator will calculate the triple product (both scalar and vector) of the three vectors, with steps shown.
Your Input
Calculate $$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$$$, $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle$$$, $$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right)$$$, and $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$$$
Solution
Calculate the scalar triple product $$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$$$
$$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle$$$ (for steps, see cross product calculator).
Next, $$$\left\langle -2, 3, 1\right\rangle\cdot \left\langle -4, -7, 2\right\rangle = -11$$$ (for steps, see dot product calculator).
The scalar triple product can be found as the determinant that has three vectors as its rows or columns.
Calculate the scalar triple product $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle.$$$
$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle$$$ (for steps, see cross product calculator).
Next, $$$\left\langle 4, 7, -13\right\rangle\cdot \left\langle -3, 2, 1\right\rangle = -11$$$ (for steps, see dot product calculator).
The scalar triple product can be found as the determinant that has three vectors as its rows or columns.
Calculate the vector triple product $$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right).$$$
$$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle$$$ (for steps, see cross product calculator).
Next, $$$\left\langle -2, 3, 1\right\rangle\times \left\langle -4, -7, 2\right\rangle = \left\langle 13, 0, 26\right\rangle$$$ (for steps, see cross product calculator).
Calculate the vector triple product $$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle.$$$
$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle$$$ (for steps, see cross product calculator).
Next, $$$\left\langle 4, 7, -13\right\rangle\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$$$ (for steps, see cross product calculator).
Answer
$$$\left\langle -2, 3, 1\right\rangle\cdot \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = -11$$$A
$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\cdot \left\langle -3, 2, 1\right\rangle = -11$$$A
$$$\left\langle -2, 3, 1\right\rangle\times \left(\left\langle 7, -4, 0\right\rangle\times \left\langle -3, 2, 1\right\rangle\right) = \left\langle 13, 0, 26\right\rangle$$$A
$$$\left(\left\langle -2, 3, 1\right\rangle\times \left\langle 7, -4, 0\right\rangle\right)\times \left\langle -3, 2, 1\right\rangle = \left\langle 33, 35, 29\right\rangle$$$A