Integral of $$$x^{61}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{61}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=61$$$:
$${\color{red}{\int{x^{61} d x}}}={\color{red}{\frac{x^{1 + 61}}{1 + 61}}}={\color{red}{\left(\frac{x^{62}}{62}\right)}}$$
Therefore,
$$\int{x^{61} d x} = \frac{x^{62}}{62}$$
Add the constant of integration:
$$\int{x^{61} d x} = \frac{x^{62}}{62}+C$$
Answer
$$$\int x^{61}\, dx = \frac{x^{62}}{62} + C$$$A
Please try a new game Rotatly