Integral of $$$w^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int w^{2}\, dw$$$.
Solution
Apply the power rule $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{w^{2} d w}}}={\color{red}{\frac{w^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{w^{3}}{3}\right)}}$$
Therefore,
$$\int{w^{2} d w} = \frac{w^{3}}{3}$$
Add the constant of integration:
$$\int{w^{2} d w} = \frac{w^{3}}{3}+C$$
Answer
$$$\int w^{2}\, dw = \frac{w^{3}}{3} + C$$$A
Please try a new game Rotatly