Integral of $$$u$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int u\, du$$$.
Solution
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$${\color{red}{\int{u d u}}}={\color{red}{\frac{u^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Therefore,
$$\int{u d u} = \frac{u^{2}}{2}$$
Add the constant of integration:
$$\int{u d u} = \frac{u^{2}}{2}+C$$
Answer
$$$\int u\, du = \frac{u^{2}}{2} + C$$$A
Please try a new game Rotatly