Integral of $$$\sin{\left(14 x \right)} \cos{\left(5 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(14 x \right)} \cos{\left(5 x \right)}\, dx$$$.
Solution
Rewrite the integrand using the formula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ with $$$\alpha=14 x$$$ and $$$\beta=5 x$$$:
$${\color{red}{\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(9 x \right)}}{2} + \frac{\sin{\left(19 x \right)}}{2}\right)d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \sin{\left(9 x \right)} + \sin{\left(19 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\sin{\left(9 x \right)}}{2} + \frac{\sin{\left(19 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(9 x \right)} + \sin{\left(19 x \right)}\right)d x}}{2}\right)}}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(\sin{\left(9 x \right)} + \sin{\left(19 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(9 x \right)} d x} + \int{\sin{\left(19 x \right)} d x}\right)}}}{2}$$
Let $$$u=9 x$$$.
Then $$$du=\left(9 x\right)^{\prime }dx = 9 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{9}$$$.
Therefore,
$$\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(9 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{9}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{9}\right)}}}{2}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{18} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{18}$$
Recall that $$$u=9 x$$$:
$$\frac{\int{\sin{\left(19 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{18} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(9 x\right)}} \right)}}{18}$$
Let $$$u=19 x$$$.
Then $$$du=\left(19 x\right)^{\prime }dx = 19 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{19}$$$.
So,
$$- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\sin{\left(19 x \right)} d x}}}}{2} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{19} d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{19}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{19} d u}}}}{2} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{19}\right)}}}{2}$$
The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{38} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{38}$$
Recall that $$$u=19 x$$$:
$$- \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left({\color{red}{u}} \right)}}{38} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left({\color{red}{\left(19 x\right)}} \right)}}{38}$$
Therefore,
$$\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}$$
Add the constant of integration:
$$\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}+C$$
Answer
$$$\int \sin{\left(14 x \right)} \cos{\left(5 x \right)}\, dx = \left(- \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}\right) + C$$$A