Integral of $$$\sec^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec^{2}{\left(x \right)}\, dx$$$.
Solution
The integral of $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$
Therefore,
$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$
Add the constant of integration:
$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}+C$$
Answer
$$$\int \sec^{2}{\left(x \right)}\, dx = \tan{\left(x \right)} + C$$$A