Integral of $$$\sec^{2}{\left(\theta \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec^{2}{\left(\theta \right)}\, d\theta$$$.
Solution
The integral of $$$\sec^{2}{\left(\theta \right)}$$$ is $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
Therefore,
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$
Add the constant of integration:
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}+C$$
Answer
$$$\int \sec^{2}{\left(\theta \right)}\, d\theta = \tan{\left(\theta \right)} + C$$$A