Integral of $$$\ln\left(u\right)$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \ln\left(u\right)\, du$$$.
Solution
For the integral $$$\int{\ln{\left(u \right)} d u}$$$, use integration by parts $$$\int \operatorname{o} \operatorname{dv} = \operatorname{o}\operatorname{v} - \int \operatorname{v} \operatorname{do}$$$.
Let $$$\operatorname{o}=\ln{\left(u \right)}$$$ and $$$\operatorname{dv}=du$$$.
Then $$$\operatorname{do}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d u}=u$$$ (steps can be seen »).
So,
$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$
Therefore,
$$\int{\ln{\left(u \right)} d u} = u \ln{\left(u \right)} - u$$
Simplify:
$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)$$
Add the constant of integration:
$$\int{\ln{\left(u \right)} d u} = u \left(\ln{\left(u \right)} - 1\right)+C$$
Answer
$$$\int \ln\left(u\right)\, du = u \left(\ln\left(u\right) - 1\right) + C$$$A