Integral of $$$\frac{1}{x - 20}$$$ with respect to $$$e$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x - 20}\, de$$$.
Solution
Apply the constant rule $$$\int c\, de = c e$$$ with $$$c=\frac{1}{x - 20}$$$:
$${\color{red}{\int{\frac{1}{x - 20} d e}}} = {\color{red}{\frac{e}{x - 20}}}$$
Therefore,
$$\int{\frac{1}{x - 20} d e} = \frac{e}{x - 20}$$
Add the constant of integration:
$$\int{\frac{1}{x - 20} d e} = \frac{e}{x - 20}+C$$
Answer
$$$\int \frac{1}{x - 20}\, de = \frac{e}{x - 20} + C$$$A
Please try a new game Rotatly