Integral of $$$e^{3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{3}\, de$$$.
Solution
Apply the power rule $$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:
$${\color{red}{\int{e^{3} d e}}}={\color{red}{\frac{e^{1 + 3}}{1 + 3}}}={\color{red}{\left(\frac{e^{4}}{4}\right)}}$$
Therefore,
$$\int{e^{3} d e} = \frac{e^{4}}{4}$$
Add the constant of integration:
$$\int{e^{3} d e} = \frac{e^{4}}{4}+C$$
Answer
$$$\int e^{3}\, de = \frac{e^{4}}{4} + C$$$A