Integral of $$$x e^{\frac{9}{100}}$$$

The calculator will find the integral/antiderivative of $$$x e^{\frac{9}{100}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x e^{\frac{9}{100}}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=e^{\frac{9}{100}}$$$ and $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{x e^{\frac{9}{100}} d x}}} = {\color{red}{e^{\frac{9}{100}} \int{x d x}}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$e^{\frac{9}{100}} {\color{red}{\int{x d x}}}=e^{\frac{9}{100}} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=e^{\frac{9}{100}} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Therefore,

$$\int{x e^{\frac{9}{100}} d x} = \frac{x^{2} e^{\frac{9}{100}}}{2}$$

Add the constant of integration:

$$\int{x e^{\frac{9}{100}} d x} = \frac{x^{2} e^{\frac{9}{100}}}{2}+C$$

Answer

$$$\int x e^{\frac{9}{100}}\, dx = \frac{x^{2} e^{\frac{9}{100}}}{2} + C$$$A


Please try a new game Rotatly