Integral of $$$e^{2 - x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{2 - x}\, dx$$$.
Solution
Let $$$u=2 - x$$$.
Then $$$du=\left(2 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
So,
$${\color{red}{\int{e^{2 - x} d x}}} = {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- e^{u}\right)d u}}} = {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- {\color{red}{\int{e^{u} d u}}} = - {\color{red}{e^{u}}}$$
Recall that $$$u=2 - x$$$:
$$- e^{{\color{red}{u}}} = - e^{{\color{red}{\left(2 - x\right)}}}$$
Therefore,
$$\int{e^{2 - x} d x} = - e^{2 - x}$$
Add the constant of integration:
$$\int{e^{2 - x} d x} = - e^{2 - x}+C$$
Answer
$$$\int e^{2 - x}\, dx = - e^{2 - x} + C$$$A