Integral of $$$e^{- z}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- z}\, dz$$$.
Solution
Let $$$u=- z$$$.
Then $$$du=\left(- z\right)^{\prime }dz = - dz$$$ (steps can be seen »), and we have that $$$dz = - du$$$.
So,
$${\color{red}{\int{e^{- z} d z}}} = {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- e^{u}\right)d u}}} = {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- {\color{red}{\int{e^{u} d u}}} = - {\color{red}{e^{u}}}$$
Recall that $$$u=- z$$$:
$$- e^{{\color{red}{u}}} = - e^{{\color{red}{\left(- z\right)}}}$$
Therefore,
$$\int{e^{- z} d z} = - e^{- z}$$
Add the constant of integration:
$$\int{e^{- z} d z} = - e^{- z}+C$$
Answer
$$$\int e^{- z}\, dz = - e^{- z} + C$$$A