Integral of $$$\frac{1}{x \ln\left(x\right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x \ln\left(x\right)}\, dx$$$.
Solution
Let $$$u=\ln{\left(x \right)}$$$.
Then $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (steps can be seen »), and we have that $$$\frac{dx}{x} = du$$$.
The integral can be rewritten as
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=\ln{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}$$
Therefore,
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}+C$$
Answer
$$$\int \frac{1}{x \ln\left(x\right)}\, dx = \ln\left(\left|{\ln\left(x\right)}\right|\right) + C$$$A