Integral of $$$\frac{s^{2}}{d t}$$$ with respect to $$$t$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{s^{2}}{d t}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{s^{2}}{d}$$$ and $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{s^{2}}{d t} d t}}} = {\color{red}{\frac{s^{2} \int{\frac{1}{t} d t}}{d}}}$$
The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{s^{2} {\color{red}{\int{\frac{1}{t} d t}}}}{d} = \frac{s^{2} {\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{d}$$
Therefore,
$$\int{\frac{s^{2}}{d t} d t} = \frac{s^{2} \ln{\left(\left|{t}\right| \right)}}{d}$$
Add the constant of integration:
$$\int{\frac{s^{2}}{d t} d t} = \frac{s^{2} \ln{\left(\left|{t}\right| \right)}}{d}+C$$
Answer
$$$\int \frac{s^{2}}{d t}\, dt = \frac{s^{2} \ln\left(\left|{t}\right|\right)}{d} + C$$$A