Integral of $$$_100 d_{100} \cos{\left(z \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int _100 d_{100} \cos{\left(z \right)}\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=_100 d_{100} \cos{\left(z \right)}$$$:
$${\color{red}{\int{_100 d_{100} \cos{\left(z \right)} d x}}} = {\color{red}{_100 d_{100} x \cos{\left(z \right)}}}$$
Therefore,
$$\int{_100 d_{100} \cos{\left(z \right)} d x} = _100 d_{100} x \cos{\left(z \right)}$$
Add the constant of integration:
$$\int{_100 d_{100} \cos{\left(z \right)} d x} = _100 d_{100} x \cos{\left(z \right)}+C$$
Answer
$$$\int _100 d_{100} \cos{\left(z \right)}\, dx = _100 d_{100} x \cos{\left(z \right)} + C$$$A