Integral of $$$\cos{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \cos{\left(x \right)}\, dx$$$.
Solution
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\cos{\left(x \right)} d x}}} = {\color{red}{\sin{\left(x \right)}}}$$
Therefore,
$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$
Add the constant of integration:
$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}+C$$
Answer
$$$\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)} + C$$$A