Integral of $$$b \sin{\left(x \right)}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int b \sin{\left(x \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=b$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{b \sin{\left(x \right)} d x}}} = {\color{red}{b \int{\sin{\left(x \right)} d x}}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$b {\color{red}{\int{\sin{\left(x \right)} d x}}} = b {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Therefore,
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}$$
Add the constant of integration:
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}+C$$
Answer
$$$\int b \sin{\left(x \right)}\, dx = - b \cos{\left(x \right)} + C$$$A