Integral of $$$95 - 4 x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(95 - 4 x\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(95 - 4 x\right)d x}}} = {\color{red}{\left(\int{95 d x} - \int{4 x d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=95$$$:
$$- \int{4 x d x} + {\color{red}{\int{95 d x}}} = - \int{4 x d x} + {\color{red}{\left(95 x\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = x$$$:
$$95 x - {\color{red}{\int{4 x d x}}} = 95 x - {\color{red}{\left(4 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$95 x - 4 {\color{red}{\int{x d x}}}=95 x - 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=95 x - 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(95 - 4 x\right)d x} = - 2 x^{2} + 95 x$$
Simplify:
$$\int{\left(95 - 4 x\right)d x} = x \left(95 - 2 x\right)$$
Add the constant of integration:
$$\int{\left(95 - 4 x\right)d x} = x \left(95 - 2 x\right)+C$$
Answer
$$$\int \left(95 - 4 x\right)\, dx = x \left(95 - 2 x\right) + C$$$A