Integral of $$$9 e^{\sqrt{x}}$$$

The calculator will find the integral/antiderivative of $$$9 e^{\sqrt{x}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int 9 e^{\sqrt{x}}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=9$$$ and $$$f{\left(x \right)} = e^{\sqrt{x}}$$$:

$${\color{red}{\int{9 e^{\sqrt{x}} d x}}} = {\color{red}{\left(9 \int{e^{\sqrt{x}} d x}\right)}}$$

Let $$$u=\sqrt{x}$$$.

Then $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (steps can be seen »), and we have that $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

So,

$$9 {\color{red}{\int{e^{\sqrt{x}} d x}}} = 9 {\color{red}{\int{2 u e^{u} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = u e^{u}$$$:

$$9 {\color{red}{\int{2 u e^{u} d u}}} = 9 {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$

For the integral $$$\int{u e^{u} d u}$$$, use integration by parts $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Let $$$\operatorname{m}=u$$$ and $$$\operatorname{dv}=e^{u} du$$$.

Then $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (steps can be seen »).

Therefore,

$$18 {\color{red}{\int{u e^{u} d u}}}=18 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=18 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$

The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:

$$18 u e^{u} - 18 {\color{red}{\int{e^{u} d u}}} = 18 u e^{u} - 18 {\color{red}{e^{u}}}$$

Recall that $$$u=\sqrt{x}$$$:

$$- 18 e^{{\color{red}{u}}} + 18 {\color{red}{u}} e^{{\color{red}{u}}} = - 18 e^{{\color{red}{\sqrt{x}}}} + 18 {\color{red}{\sqrt{x}}} e^{{\color{red}{\sqrt{x}}}}$$

Therefore,

$$\int{9 e^{\sqrt{x}} d x} = 18 \sqrt{x} e^{\sqrt{x}} - 18 e^{\sqrt{x}}$$

Simplify:

$$\int{9 e^{\sqrt{x}} d x} = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}$$

Add the constant of integration:

$$\int{9 e^{\sqrt{x}} d x} = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}}+C$$

Answer

$$$\int 9 e^{\sqrt{x}}\, dx = 18 \left(\sqrt{x} - 1\right) e^{\sqrt{x}} + C$$$A


Please try a new game Rotatly