Integral of $$$5 x^{2} - x - 309$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(5 x^{2} - x - 309\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(5 x^{2} - x - 309\right)d x}}} = {\color{red}{\left(- \int{309 d x} - \int{x d x} + \int{5 x^{2} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=309$$$:
$$- \int{x d x} + \int{5 x^{2} d x} - {\color{red}{\int{309 d x}}} = - \int{x d x} + \int{5 x^{2} d x} - {\color{red}{\left(309 x\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- 309 x + \int{5 x^{2} d x} - {\color{red}{\int{x d x}}}=- 309 x + \int{5 x^{2} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 309 x + \int{5 x^{2} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=5$$$ and $$$f{\left(x \right)} = x^{2}$$$:
$$- \frac{x^{2}}{2} - 309 x + {\color{red}{\int{5 x^{2} d x}}} = - \frac{x^{2}}{2} - 309 x + {\color{red}{\left(5 \int{x^{2} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- \frac{x^{2}}{2} - 309 x + 5 {\color{red}{\int{x^{2} d x}}}=- \frac{x^{2}}{2} - 309 x + 5 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \frac{x^{2}}{2} - 309 x + 5 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Therefore,
$$\int{\left(5 x^{2} - x - 309\right)d x} = \frac{5 x^{3}}{3} - \frac{x^{2}}{2} - 309 x$$
Simplify:
$$\int{\left(5 x^{2} - x - 309\right)d x} = \frac{x \left(10 x^{2} - 3 x - 1854\right)}{6}$$
Add the constant of integration:
$$\int{\left(5 x^{2} - x - 309\right)d x} = \frac{x \left(10 x^{2} - 3 x - 1854\right)}{6}+C$$
Answer
$$$\int \left(5 x^{2} - x - 309\right)\, dx = \frac{x \left(10 x^{2} - 3 x - 1854\right)}{6} + C$$$A