Integral of $$$\frac{2 \sin{\left(x \right)}}{5}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{2 \sin{\left(x \right)}}{5}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{2}{5}$$$ and $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\frac{2 \sin{\left(x \right)}}{5} d x}}} = {\color{red}{\left(\frac{2 \int{\sin{\left(x \right)} d x}}{5}\right)}}$$
The integral of the sine is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{2 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{5} = \frac{2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{5}$$
Therefore,
$$\int{\frac{2 \sin{\left(x \right)}}{5} d x} = - \frac{2 \cos{\left(x \right)}}{5}$$
Add the constant of integration:
$$\int{\frac{2 \sin{\left(x \right)}}{5} d x} = - \frac{2 \cos{\left(x \right)}}{5}+C$$
Answer
$$$\int \frac{2 \sin{\left(x \right)}}{5}\, dx = - \frac{2 \cos{\left(x \right)}}{5} + C$$$A