Integral of $$$1 + \frac{2}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(1 + \frac{2}{x}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(1 + \frac{2}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\frac{2}{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\frac{2}{x} d x} + {\color{red}{\int{1 d x}}} = \int{\frac{2}{x} d x} + {\color{red}{x}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$x + {\color{red}{\int{\frac{2}{x} d x}}} = x + {\color{red}{\left(2 \int{\frac{1}{x} d x}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$x + 2 {\color{red}{\int{\frac{1}{x} d x}}} = x + 2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Therefore,
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\left(1 + \frac{2}{x}\right)d x} = x + 2 \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \left(1 + \frac{2}{x}\right)\, dx = \left(x + 2 \ln\left(\left|{x}\right|\right)\right) + C$$$A