Integral of $$$15^{- x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 15^{- x}\, dx$$$.
Solution
Let $$$u=- x$$$.
Then $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
Thus,
$${\color{red}{\int{15^{- x} d x}}} = {\color{red}{\int{\left(- 15^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = 15^{u}$$$:
$${\color{red}{\int{\left(- 15^{u}\right)d u}}} = {\color{red}{\left(- \int{15^{u} d u}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=15$$$:
$$- {\color{red}{\int{15^{u} d u}}} = - {\color{red}{\frac{15^{u}}{\ln{\left(15 \right)}}}}$$
Recall that $$$u=- x$$$:
$$- \frac{15^{{\color{red}{u}}}}{\ln{\left(15 \right)}} = - \frac{15^{{\color{red}{\left(- x\right)}}}}{\ln{\left(15 \right)}}$$
Therefore,
$$\int{15^{- x} d x} = - \frac{15^{- x}}{\ln{\left(15 \right)}}$$
Add the constant of integration:
$$\int{15^{- x} d x} = - \frac{15^{- x}}{\ln{\left(15 \right)}}+C$$
Answer
$$$\int 15^{- x}\, dx = - \frac{15^{- x}}{\ln\left(15\right)} + C$$$A